Robust exact linearization of a 2D overhead crane
نویسندگان
چکیده
منابع مشابه
Anti-swing Fuzzy Controller Design for a 3D Overhead Crane
This paper proposes a simple but efficient technique to control 3D overhead crane. Load must track a desired path and not sway more than a reasonable range.The proposed method uses PID control for trolley to track the desired path and fuzzy control compensation to eliminate the load swing. Only the projection of swing angle is applied to design the fuzzy controller. No plant information of cran...
متن کاملAnti-swing Fuzzy Controller Design for a 3D Overhead Crane
This paper proposes a simple but efficient technique to control 3D overhead crane. Load must track a desired path and not sway more than a reasonable range.The proposed method uses PID control for trolley to track the desired path and fuzzy control compensation to eliminate the load swing. Only the projection of swing angle is applied to design the fuzzy controller. No plant information of cran...
متن کاملanti-swing fuzzy controller design for a 3d overhead crane
this paper proposes a simple but efficient technique to control 3d overhead crane. load musttrack a desired path and not sway more than a reasonable range.the proposed method uses pidcontrol for trolley to track the desired path and fuzzy control compensation to eliminate the loadswing. only the projection of swing angle is applied to design the fuzzy controller. no plantinformation of crane is...
متن کاملInnovative Control of an Overhead Crane System
Satisfactory real time control of the overhead crane facilitating fast transit (< 3s) and minimal swing (< 4°) was achieved in the x, y and z directions. Control was achieved in each individual direction using experimental modelling techniques, careful sampling frequency selection, NMSS representation and LQR controller design. To overcome non-linear model variation, a gain scheduling algorithm...
متن کاملExperimental Validation of Robust Iterative Learning Control on an Overhead Crane Test Setup
This paper presents an experimental validation of a recently proposed robust normoptimal iterative learning control (ILC). The robust ILC input is computed by minimizing the worst-case value of a performance index under model uncertainty, yielding a convex optimization problem. The proposed robust ILC design is experimentally validated on a lab scale overhead crane system, showing the advantage...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2018
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2018.11.567